Brandverhalten von Baustoffen und Bauteilen

Baustoffe Stahl

- nicht brennbar
- sehr guter Wärmeleiter, gleichmäßige Erwärmung
- nimmt Zug- und Druckbelastungen auf
- bis zu gewissen Grenzen elastisch (geht nach Belastung in die ursprüngliche Form zurück)

im Brandfall:

- starke Wärmeausdehnung
 - \circ Berechnung: Wärmeausdehnungskoeffizient \cdot erhitze Länge (Spannweite) \cdot

Temperaturdifferenz

Beispiel: 25 m Spannweite, Erwärmung um 600 °C (bzw. Kelvin)

 $0.01 \text{ mm/(m·K)} \cdot 25 \text{ m} \cdot 600 \text{ K} = 150 \text{ mm} = 15 \text{ cm!}$

- o sich ausdehnende Träger können angrenzende Konstruktionen verschieben/umstoßen,
- o entwickeln enorme Kräfte wenn die Ausdehnung behindert wird
- können beim Erkalten (bzw. beim schnellen Abkühlen durch Löschmittel) herunterfallen, wenn Sie das Auflager im erhitzten Zustand weggedrückt haben und danach "zu kurz" sind
- verliert bei Erwärmung seine Festigkeit
 - ∘ 50% bei ca. 500°C
 - ∘ 2/3 bei ca. 700°C
 - bei noch höheren Temperaturen ist mit Einsturz zu rechnen, da die Tragfähigkeit dann nicht einmal mehr für das Eigengewicht ausreicht.
- Brandübertragung durch Wärmeleitung
- schlagartiger Einsturz, kündigt sich nicht an

wichtige Daten

Farbe	Temperatur
Dunkelbraun	550 °C
Braunrot	630 °C
Dunkelrot	680 °C
Dunkelkirschrot	740 °C
Kirschrot	780 °C
Hellkirschrot	810 °C
Hellrot	850 °C
Gut Hellrot	900 °C
Gelbrot	950 °C
Hellgelbrot	1000 °C
Gelb	1100 °C
Hellgelb	1200 °C
Gelbweiß	>1300 °C

Dichte	ca. 7,85 kg/dm³
Wärmeleitfähigkeit	ca. 60 W/(m·K)
Wärmeausdehnungskoeffizier	nt ca. 0,01 mm/(m·K)

Beton

- nicht brennbar
- geringe Wärmeleitfähigkeit
- nur auf Druck belastbar

im Brandfall:

• Erwärmung zunächst nur in den äußeren Schichten → Abplatzungen durch Ausdehnung des eingelagerten Wassers und von Zuschlagstoffen

wichtige Daten

Dichte	ca. 0,2 bis 2,8 kg/dm³
Wärmekapazität	ca. 0,08 kJ/(kg·K)
Wärmeleitfähigkeit	ca. 0,5 bis 2,1 W/(m·K)
Wärmeausdehnungszahl	ca. 0,01 mm/(m·K)

Stahlbeton

- nicht brennbar
- auf Druck und Zug belastbar

Die sonstigen Daten entsprechen denen von normalem Beton.

im Brandfall:

• sobald die Stahleinlagen freiliegen → weitere Betonschichten platzen durch die stärkere Erwärmung des Stahls ab → Tragfähigkeitsverlust → Einsturz

Sonderfall Spannbeton:

- durch die schlankeren Querschnitte werden die Bauteile schneller durchwärmt
- kritische Temperatur der Stahleinlage bei 350 °C

Holz

- schlechter Wärmeleiter
- keine Längenausdehnung

im Brandfall:

- Einsturzgefahr ab 50%-tigem Verlust des tragenden Querschnitts
- Einsturz kündigt sich durch Knacken und Knirschen an
- Einsturz tragender Teile kann durch Löschen/Kühlen verhindert bzw. verzögert werden.

Nagelplattenbinder

Vorsicht bei Nagelplattenbindern (Bild rechts): Diese werden oftmals z.B. bei **Discountern (Aldi, Lidl, Netto, usw.)** für die **Dachkonstruktion** verwendet. Es gibt keine statischen Reserven und bei Hitzeeinwirkung versagen diese erfahrungsgemäß nach 10 bis 15 Minuten, was in der Folge zum **Einsturz der kompletten Dachkonstruktion** führt. Da das Versagen vom metallenen Nagelplattenbinder und nicht von der Holzkonstruktion ausgeht **kündigt sich ein Einsturz nicht an!**

wichtige Daten

Rohdichte	ca. 0,45 bis 0,83 kg/dm³
Wärmeleitfähigkeit	ca. 0,14 bis 0,23 W/(m·K)
Zündtemperatur	ca. 270 bis 340 °C
Zersetzungstemperatur	ca. 110 °C
Verbrennungstemperatur	ca. 1100 °C
Abbrandgeschwindigkeit	ca. 0,4 bis 1,1 mm/min

künstliche Steine

aus Lehrm, Ton, Zement, Kalk, usw.

- nicht brennbar
- geringe Wärmeleitfähigkeit
- geringe Wärmeausdehnung
- nur auf Druck belastbar

im Brandfall:

- Abplatzungen, aber geringer als bei natürlichen Steinen
- sehr widerstandsfähig gegen Brand

Natürliche Steine

- druckfest
- gute Wärmeleitfähigkeit
- nicht brennbar

im Brandfall:

- Abplatzungen durch Materialspannungen und Wassereinschlüsse, insbesondere beim schlagartigen Abkühlen mit Löschwasser
- bei starker Erwärmung Zerstörung der Struktur (z.B. Kalkstein) → Steine zerfallen bzw. zerbröseln

Kunststoffe

erzeugt am 16.12.2025 15:48

- geringe Dichte
- isolieren
- geringe Wärmeleitfähigkeit
- hoher Heizwert

im Brandfall:

- Entstehung sehr giftige Brandgase und von dichtem schwarzem Rauch
- oftmals Verlust der Festigkeit und in der Folge (brennendes) Abtropfen

Aluminium

- vergleichsweise geringe Dichte
- gute Festigkeit
- guter Wärmeleiter

im Brandfall:

- Festigkeitsverlust schon bei 150 °C
- schmilzt bei ca. 650 °C und tropft ab

Glas

- nicht brennbar
- bei Verwendung als Bauteil mit brandschutztechnischer Anforderung entweder Einsatz von Goder F-Verglasung
 - G-Verglasung stellt den Raumabschluss über die angegebene Zeit sicher (z.B. G30-Verglasung), lässt aber Strahlungswärme durch
 - F-Verglasung erhält den Raumabschluss und verhindert über aufschäumende Schichten zwischen den Scheiben auch den Durchtritt von Strahlungswärme

im Brandfall:

Widerstandsfähigkeit von normalen Verglasungen (nicht F und G) eher gering

Gusseisen

- nicht brennbar
- nur auf Druck belastbar
- sehr spröde
- zur Erhöhung der Feuerbeständigkeit ggf. (nachträglich) mit Beton ausgegossen

im Brandfall:

- bei hohen Temperaturen schlagartiger Festigkeitsverlust
- Zerspringt bei schlagartiger Abkühlung

Mineralwolle (Glas- oder Steinwolle)

nicht brennbar

Bitumen

- brennbar
- nicht wasserlöslich
- schmilzt bei Wärmeeinwirkung

im Brandfall:

- heftiges Brandverhalten
- Starke Rauchentwicklung
- Schwer zu löschen (in geschmolzenem Zustand brennbare Flüssigkeit)

Quellenangabe

- B1-Lehrgang 02/2012 am Führungs- und Schulungszentrum der BF Köln
- B4-Lehrgang 2013 an der Berliner Feuerwehr- und Rettungsdienst-Akademie
- Bild Nagelplattenbinder: http://commons.wikimedia.org/wiki/File:FEMA_-_1135_-Project_Impact_principles_-_roof_reinforc ements.jpg
- Tabelle Glühfarben: Glühen, nach Ulrich Fischer: Tabellenbuch Metall. 41. Auflage. Verlag Europa-Lehrmittel Nourney, Vollmer, 2001, ISBN 3-8085-1721-2, S. 128B.

Stichwörter