Brandverhalten von Baustoffen und Bauteilen

Baustoffe Stahl

- nicht brennbar
- sehr guter Wärmeleiter, gleichmäßige Erwärmung
- nimmt Zug- und Druckbelastungen auf
- bis zu gewissen Grenzen elastisch (geht nach Belastung in die ursprüngliche Form zurück)

im Brandfall:

- starke Wärmeausdehnung
 - Berechnung: Wärmeausdehnungskoeffizient · erhitze Länge (Spannweite) ·

Temperaturdifferenz

Beispiel: 25 m Spannweite, Erwärmung um 600 °C (bzw. Kelvin)

 $0.01 \text{ mm/(m·K)} \cdot 25 \text{ m} \cdot 600 \text{ K} = 150 \text{ mm} = 15 \text{ cm!}$

- o sich ausdehnende Träger können angrenzende Konstruktionen verschieben/umstoßen,
- o entwickeln enorme Kräfte wenn die Ausdehnung behindert wird
- können beim Erkalten (bzw. beim schnellen Abkühlen durch Löschmittel) herunterfallen, wenn Sie das Auflager im erhitzten Zustand weggedrückt haben und danach "zu kurz" sind
- verliert bei Erwärmung seine Festigkeit
 - ∘ 50% bei ca. 500°C
 - ∘ 2/3 bei ca. 700°C
 - bei noch höheren Temperaturen ist mit Einsturz zu rechnen, da die Tragfähigkeit dann nicht einmal mehr für das Eigengewicht ausreicht.
- Brandübertragung durch Wärmeleitung
- schlagartiger Einsturz, kündigt sich nicht an

wichtige Daten

Dichte	ca. 7,85 kg/dm³
Wärmeleitfähigkeit	ca. 60 W/(m·K)
Wärmeausdehnungskoeffizient	ca. 0,01 mm/(m·K)

Beton

- nicht brennbar
- geringe Wärmeleitfähigkeit
- nur auf Druck belastbar

im Brandfall:

 Erwärmung zunächst nur in den äußeren Schichten → Abplatzungen durch Ausdehnung des eingelagerten Wassers und von Zuschlagstoffen

wichtige Daten

Dichte	ca. 0,2 bis 2,8 kg/dm³
Wärmekapazität	ca. 0,08 kJ/(kg·K)
Wärmeleitfähigkeit	ca. 0,5 bis 2,1 W/(m·K)
Wärmeausdehnungszahl	ca. 0,01 mm/(m·K)

Stahlbeton

- nicht brennbar
- auf Druck und Zug belastbar

Die sonstigen Daten entsprechen denen von normalem Beton. im Brandfall:

 sobald die Stahleinlagen freiliegen → weitere Betonschichten platzen durch die stärkere Erwärmung des Stahls ab → Tragfähigkeitsverlust → Einsturz

Sonderfall Spannbeton:

- durch die schlankeren Querschnitte werden die Bauteile schneller durchwärmt
- kritische Temperatur der Stahleinlage bei 350 °C

Holz

- schlechter Wärmeleiter
- keine Längenausdehnung

im Brandfall:

- Einsturzgefahr ab 50%-tigem Verlust des tragenden Querschnitts
- Einsturz kündigt sich durch Knacken und Knirschen an
- Einsturz tragender Teile kann durch Löschen/Kühlen verhindert bzw. verzögert werden.
- Vorsicht bei Nagelplattenbindern (Bild rechts): Diese werden oftmals z.B. bei Discountern (Aldi, Lidl, Netto, usw.) für die Dachkonstruktion verwendet. Es gibt keine statischen Reserven und bei Hitzeeinwirkung versagen diese erfahrungsgemäß nach 10 bis 15 Minuten, was in der Folge zum Einsturz der kompletten Dachkonstruktion führt. Da das Versagen vom metallenen Nagelplattenbinder und nicht von der Holzkonstruktion ausgeht kündigt sich ein Einsturz nicht an!

wichtige Daten

Rohdichte	ca. 0,45 bis 0,83 kg/dm³
Wärmeleitfähigkeit	ca. 0,14 bis 0,23 W/(m·K)
Zündtemperatur	ca. 270 bis 340 °C
Zersetzungstemperatur	ca. 110 °C
Verbrennungstemperatur	ca. 1100 °C
Abbrandgeschwindigkeit	ca. 0,4 bis 1,1 mm/min

künstliche Steine

aus Lehrm, Ton, Zement, Kalk, usw.

- nicht brennbar
- geringe Wärmeleitfähigkeit
- geringe Wärmeausdehnung
- nur auf Druck belastbar

im Brandfall:

- Abplatzungen, aber geringer als bei natürlichen Steinen
- sehr widerstandsfähig gegen Brand

Natürliche Steine

- druckfest
- gute Wärmeleitfähigkeit
- nicht brennbar

im Brandfall:

- Abplatzungen durch Materialspannungen und Wassereinschlüsse, insbesondere beim schlagartigen Abkühlen mit Löschwasser
- bei starker Erwärmung Zerstörung der Struktur (z.B. Kalkstein) → Steine zerfallen bzw. zerbröseln

Kunststoffe

- geringe Dichte
- isolieren
- geringe Wärmeleitfähigkeit
- hoher Heizwert

im Brandfall:

- Entstehung sehr giftige Brandgase und von dichtem schwarzem Rauch
- oftmals Verlust der Festigkeit und in der Folge (brennendes) Abtropfen

Aluminium

- vergleichsweise geringe Dichte
- gute Festigkeit
- guter Wärmeleiter

im Brandfall:

- Festigkeitsverlust schon bei 150 °C
- schmilzt bei ca. 650 °C und tropft ab

Glas

- nicht brennbar
- bei Verwendung als Bauteil mit brandschutztechnischer Anforderung entweder Einsatz von Goder F-Verglasung
 - G-Verglasung stellt den Raumabschluss über die angegebene Zeit sicher (z.B. G30-Verglasung), lässt aber Strahlungswärme durch
 - F-Verglasung erhält den Raumabschluss und verhindert über aufschäumende Schichten zwischen den Scheiben auch den Durchtritt von Strahlungswärme

im Brandfall:

erzeugt am 16.12.2025 15:48

• Widerstandsfähigkeit von normalen Verglasungen (nicht F und G) eher gering

Gusseisen

- nicht brennbar
- nur auf Druck belastbar
- sehr spröde
- zur Erhöhung der Feuerbeständigkeit ggf. (nachträglich) mit Beton ausgegossen

im Brandfall:

- bei hohen Temperaturen schlagartiger Festigkeitsverlust
- Zerspringt bei schlagartiger Abkühlung

Mineralwolle (Glas- oder Steinwolle)

• nicht brennbar

Bitumen

- brennbar
- nicht wasserlöslich
- schmilzt bei Wärmeeinwirkung

im Brandfall:

- heftiges Brandverhalten
- Starke Rauchentwicklung
- Schwer zu löschen (in geschmolzenem Zustand brennbare Flüssigkeit)

Quellenangabe

- B1-Lehrgang 02/2012 am Führungs- und Schulungszentrum der BF Köln
- B4-Lehrgang 2013 an der Berliner Feuerwehr- und Rettungsdienst-Akademie
- Bild Nagelplattenbinder: http://commons.wikimedia.org/wiki/File:FEMA_-_1135_-Project_Impact_principles_-_roof_reinforc ements.jpg

Stichwörter